Tesla Turbine Design, Working and applications

 Tesla Turbine

Tesla turbine is consists of a bladeless turbine that has an input through an air pipe nozzle. The body of the turbine has two outlets, one is for the incoming of the air and the other for the outgoing of the air. Apart from that, the rotating disc consists of 3 to 4 layers, which are joined together. There is a thin air gap between the layers where the air is passed at a very high speed. The rotating disc has two faces, outface and rear face. In both aspects, there is no scope for the air to flow outside the turbine body. The air can only enter through the inlet pipe and release through the outlet pipe. The turbine body consists of multiple disk rotor which is joined together. All the rotor discs are joined together on a common shaft where the disc can rotate. There is outer housing for the disks to be placed. The discs are usually connected through bolts. The front-end and rear-end have exhaust output ports through which the air can exit the turbine body. The placement of the holes is done such that, a vortex of inlet air is created.

Tesla Turbine Design

The design consists of two inlet pipe, out which one is connected to the air hose pipe. Out of the two inlets, anyone can be used as input. Inside the body, the rotor disks are placed which are joined together with the help of bolts. All the discs are placed on one common shaft which is connected to the outer body.
For example, if it is used as a pump, then the shaft is connected to the motor. There is a thin air gap between the discs, where the air flows and makes the discs rotate. Due to the air gap, the air molecules are able to create a drag on the disc. The front and rear cover have 4-5 holes through which the inlet air is able to be passed to the atmosphere. The holes are placed such that, a vortex is created and the air can rotate at a very high speed. Due to this high-speed air, it exerts a high-speed drag on the disc and makes the disc rotate at very high speeds. The disc gap is one of the critical parameters for the design and efficiency of the turbine. The optimum gap size required to maintain the gap layer depends on the peripheral velocity of the disc.

How does Turbine Work?

Tesla turbine works on the concept of the boundary layer. It consists of two inlets. In general, the water of air is used as the inlet to the turbine. The turbine body consists of rotor disks that are joined together with the help of bolts. All the disks are placed on a common shaft. The turbine body consists of two cases, the front casing, and the rear casing. In each casing, there are 4 to 4 holes. All these factors like the number of disks, disk diameter, etc., play an important role in evaluating the efficiency of the turbine. When the air is allowed to flow through the hose pipe, it enters the turbine body. Inside the turbine body, discs are placed which are connected to each other. There is a thin air gap between the discs. When the air molecules enter the turbine body they exert a drag on the discs. Due to this drag, the discs start rotating. The front and rear casings consist of holes such that when air enters it gets exit through these holes. The holes are placed such that, a vortex of air or water is established within the disc body. Which causes the air to exert more drag on the discs. This causes the discs to rotate at a very high speed. The area of contact between the vortex and discs is low at low speeds. But as the air gains speed, this contact increases, which allows the discs to rotate at a very high speed. The centrifugal force of the discs tries to push the air outwards. But the air has no path except the holes on the front and rear casings. This makes the air exit, and the vortex becomes more strong. The speed of the discs is almost equal to the speed of the airflow.

Advantages

  • Very high efficiency
  •  Production cost is less
  •  Simple design
  • Can be rotated in both direction

Disadvantages

  • Not feasible for high power applications
  • For high efficiency, the flow rate must be small
  • Efficiency depends on in and outflow of the working fluids.

Applications

  •  Compression of liquids
  • Pumps
  • Vane type turbine applications
  • Blood pumps

Comments